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Nonlinear dynamics of the electromagnetic ion cyclotron structures
in the inner magnetosphere
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[1] Electromagnetic ion cyclotron waves, called EMICs, are widely observed in the inner
magnetosphere and can be excited through various plasma mechanisms such as ion
temperature anisotropy. These waves interact with magnetospheric particles, which they
can scatter into the loss cone. This paper investigates how nonlinearities in the ion
fluid equations governing the electromagnetic ion cyclotron waves cause large‐amplitude
EMIC waves to evolve into coherent nonlinear structures. Both planar soliton structures
and also two‐dimensional vortex‐like nonlinear structures are found to develop out of
these nonlinearities.
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1. Introduction

[2] Electromagnetic ion cyclotron waves, commonly
called EMICs, appear to play a multifaceted role in the
Earth’s inner magnetosphere. These waves can be excited
by spontaneous plasma instability when plasma is injected
via substorms from the geomagnetic tail into the inner
magnetosphere [e.g., Cornwall, 1965]. This plasma injec-
tion conserves the magnetic momentum of the hot ions in
the plasma sheet, producing an energetic ion plasma com-
ponent with energy up to 30 keV near L shell values of 4 or
5. Owing to its anisotropy in velocity space, this population
of energetic ions can drive the EMIC waves through Landau
cyclotron resonances. Another common source of electro-
magnetic ion cyclotron waves is the compression of the
magnetopause, which leads to an anisotropic ion distribu-
tion, where the anisotropy is the instability source
[Anderson and Hamilton, 1993].
[3] Electromagnetic ion cyclotron waves have been

investigated for a long time with both ground‐based
instruments and satellite experiments. Initial observations by
satellite were made by Russell et al. [1970], Gurnett [1976],
and Kintner and Gurnett [1977]. EMIC waves have been
seen in association with intense electron fluxes on the
auroral field lines with the S3‐3 satellite [Kintner et al.,

1979; Temerin and Lysak, 1984], the Freja satellite
[Hamrin et al., 2002], the Fast satellite [Chaston et al.,
2002], and the Polar satellite [Santolík et al., 2002]. The
typical spatial distribution of intense EMICs and whistlers in
the magnetosphere is shown in Figure 1, which is taken
from Summers et al. [1998]. EMIC waves have also been
observed in the equatorial plane at various L values by the
GEOS satellites [Young et al., 1981], the Akebono satellite
[Sawada et al., 1991; Kasahara et al., 1994; Liu et al.,
1994], the Equator‐S satellite [Mouikis et al., 2002], and
the CRESS satellite [Fraser and Nguyen, 2001; Meredith et
al., 2003]. In this equatorial region, EMIC waves are gen-
erated by the ion cyclotron instability driven by the aniso-
tropic distribution of ring current energetic ions during
magnetic storms [see Mouikis et al., 2002; Summers and
Thorne, 2003, and references therein]. They are character-
ized by wave structures with the electric and magnetic field
power below the first multiple of the proton cyclotron fre-
quency. EMIC waves are known to take part in the pre-
cipitation of electrons [e.g., Lorentzen et al., 2000; Summers
and Ma, 2000; Summers and Thorne, 2003; Meredith et al.,
2003]. Parrot et al. [2006] reported the observation of
electromagnetic harmonic emissions with the microsatellite
DEMETER. These emissions were detected in the ELF
range (500 Hz to 2 kHz) in the upper ionosphere during
large magnetic storms, and it was shown that they could be
related to the electromagnetic ion cyclotron waves.
[4] In the present work, we assume that electromagnetic

ion cyclotron waves are present with sufficiently large
amplitude so that their nonlinear structure and the conditions
for parametric instabilities become important. After dis-
playing the linear dispersion relation with a kinetic theory
response for the ions, we develop a nonlinear two‐component
fluid description of the electromagnetic ion cyclotron waves
and explore their properties with respect to propagation
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speed versus amplitude. We also consider how the resulting
coherent nonlinear structures may accelerate ions to MeV
energies.
[5] In section 2 we develop the basic equations for the

linear EMICs in the magnetosphere. In section 3 we give the
nonlinear two‐component fluid equations for the EMICS
and consider the parametric decay instability of a large‐
amplitude plane wave solution. In section 4 we consider that
the amplitudes are well above the parametric instability limit
and thus look for soliton and vortex solutions of the non-
linear equations. In section 5 we summarize our results.

2. Basic Equations for Electromagnetic Ion
Cyclotron Waves

[6] We consider the nonlinear dynamics of electromag-
netic fields in the inner magnetosphere. Our investigation is
also applicable to the upper regions of the Earth’s iono-
sphere. We consider the propagation of circularly polarized
nonlinear electromagnetic waves propagating along the
dipole geomagnetic field in the equatorial region of the inner
magnetosphere. We assume that the electromagnetic emis-
sion frequency w0 is close to the proton gyrofrequency wcp,
i.e.,

!0 ’ !cp ¼ 2:98L"3kHz; ð1Þ

where L = req/RE is the shell parameter of the dipole geo-
magnetic field, req is the radial distance to the magnetic field
line in the equatorial plane, and RE = 6.37 × 106 m is the
Earth’s radius. Further, we consider regions around L = 2.
The circularly polarized electric field is given by

E" ¼ Ex " iEz ¼ E x; y; tð Þ exp i k0y" !0tð Þ½ &: ð2Þ

Here k0 is the y component of the wave number of the
electromagnetic emission. Thus the pumping electromag-
netic waves are assumed to propagate almost along the
homogeneous and constant geomagnetic field B0 oriented

along the y axis. The amplitude E(x, y, t) in equation (2)
becomes a slowly varying function of spatial coordinates
and time due to the nonlinear interaction of the electro-
magnetic waves with plasma. A schematic of the local
coordinate system used for the EMIC waves is shown in
Figure 2. The electromagnetic wave fluctuations are in the
x and z directions, transverse to the geomagnetic field
(y direction), where x is the azimuthal symmetry direction
around the Earth.
[7] Taking the inner magnetosphere plasma to be colli-

sionless and nondegenerate for the frequencies of equation (1),
we have the following dispersion equation [Alexandrov
et al., 1984],

N2 ¼ k20c
2

!2
0

¼ 1"
!2
pe

!0!ce
"

!2
pp

!0 !0 " !cp
! " Iþ

!0 " !cp

k0vtp

# $
; ð3Þ

where

Iþ !ð Þ ¼ !e"!2=2
Z i!

"1
d"e""2=2; ð4Þ

with z = (w0 − wcp)/vtp. Here wpe and wpp are the electron and
proton Langmuir frequencies, respectively; wce is the
electron gyrofrequency; vtp is the proton thermal velocity;
and c is the speed of light in vacuum. For the range of
frequencies w0 ≫ ∣w0 − wcp∣ ≫ k0vtp, the function I+ can be
approximated as

Iþ !ð Þ ffi 1þ 1
!2

þ ) ) ) " i

ffiffiffi
#

2

r
! exp "!2=2

! "
: ð5Þ

It follows from the dispersion equation (3) that the refractive
index N is complex, i.e., N = N0 + ih, where

N2
0 ¼ k20c

2

!2
0

¼ 1"
!2
pe

!0!ce
"

!2
pp

!0 !0 " !cp
! " ; ð6Þ

$ ¼
ffiffiffi
#

8

r
!2
pp

N0k0!0vtp
exp "

c2 !cp " !0
! "2

2!2
0N

2
0 v2tp

 !

: ð7Þ

Figure 1. Typical spread of the electromagnetic ion cyclo-
tron waves (EMIC) and whistler waves in the inner magne-
tosphere [from Summers et al., 1998].

Figure 2. Schematic of the local coordinate system used
for the EMIC waves.
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[8] Outside the resonance region ∣wcp − w0∣ ≫ k0vtp, the
absorption of proton cyclotron waves is exponentially small.
From equation (7), by maximizing h with respect to k0, we
find that the limit to the resonance occurs at k0 = ∣wcp − w0∣/ffiffiffi
2

p
vtp. By using this expression for the frequency difference

in the third term on the right‐hand side of equation (6),
which dominates near resonance (w0 ≤ wcp), we obtain the
maximum value for the refraction index as

N0max ¼
cffiffiffi
2

p
vtp

!2
pp

!2
cp

 !1=3

: ð8Þ

[9] Neglecting the wave absorption and solving equation
(6) as the dispersion relation N0

2 = (k0c/w0)
2 for the fre-

quency, we obtain the result shown in Figure 3. We used the
following typical parameters: L = 2, B0 = 0.3 L−3 ≈ 0.04 G,
background densities (plasmasphere) ne = np = 104 cm−2,
and energetic particle energies (ring current) Tp = 10 keV
and Te = 1 keV. The upper branch in Figure 3 is the dis-
persion curve for EMIC waves and the lower branch is for
whistler waves. The EMIC waves are left‐hand circularly
polarized and resonate with energetic ions, whereas whis-
tler waves are right‐hand circularly polarized and resonate
with high‐energy electrons. The formation of coherent
structures, including vortices and solitons, requires the
balancing of the dispersion in the w(k) waves with non-
linear terms in the wave dynamics, as is explained in
sections 3 and 4.
[10] For the EMIC waves and solitons, the typical spatial

scale is c/wcp ∼ 500 km (at L = 2) and the typical timescale
is (w0Dw)−1/2 ∼ 30 ms, with Dw = ∣w0 − wcp∣. Hence the
appropriate dimensionless space and time variables are x′ =
x(wcp/c) and t′ = t(w0Dw)1/2. The normalized electric field‐
related quantity (dimensionless) is a = (w0/Dw)(eA/mpc

2),
where A is the amplitude of the vector potential. In terms

of a, the electric and magnetic field amplitudes are given
by E = (Dwmpc/e)a and dB = (Dw/w0)E.

3. Nonlinear Two‐Component Fluid Description
of EMICs

[11] In this section we will discuss the modulational
instability that occurs when the waves under consideration
propagate along the external geomagnetic field. The slow
motion will be described in the MHD approximation. We
will show that if the plasma has appropriate properties, the
growth rates for the modulational instability become much
higher at oblique propagation angles to B0y. For ion cyclotron
waves, we derive a two‐dimensional nonlinear Schrödinger
equation and show that in the stationary case, it has two
naturally distinct solutions: for sufficiently small ampli-
tudes, there exists a bright soliton solution, and for larger
amplitudes, the amplitude of the electromagnetic waves
oscillates. The generation of quasi‐static magnetic fields and
vortices and the acceleration of protons by these vortices are
also discussed.

3.1. Vector Potential Description and the Pondermotive
Force
[12] Here we will discuss the basic equations that describe

the nonlinear modulation of electromagnetic ion cyclotron
waves propagating along the magnetic field B0y. We assume
that the modulation frequency is much smaller than the ion
(proton) gyrofrequency. Then the slow motion of the plasma
can be described by the following time‐averaged single‐
fluid MHD equations for the plasma mass density r and
velocity v, valid under the condition that the electrons and
ions are isothermal, with temperatures such that Te ≫ Ti:

@%

@t
þr) %vð Þ ¼ 0; ð9Þ

@v
@t

þ v )rð Þv ¼ " v2sr%

%
" 1
4#%

B*r* Bþ f
mp

: ð10Þ

Here, B is the total magnetic field; f is the ponderomotive
force incorporating the motion of the protons; r = mpnp +
mene ≅ npmp since mp ≫ me, where np is the proton density;
and vs =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mp

p
is the proton sound velocity. The first

term on the right‐hand side of equation (10) represents the
plasma pressure gradient contribution.
[13] In our consideration, the ponderomotive force f has

two components [Nishikawa et al., 1980],

fx ¼ "
mp!0

!0 " !cp

@

@x
e2 j E j2

m2
p!

2
0

; ð11Þ

fy ¼ "
mp!0

!0 " !cp

@

@y
e2 j E j2

m2
p!

2
0

þ
mpk0!cp

!0 " !cp
! "2

@

@t
e2 j E j2

m2
p!

2
0

; ð12Þ

where ∣E∣ = (w0/c)∣A∣, with the electric field E being related
to the vector potential A as E = −1

c(∂A/∂t).

Figure 3. Dispersion curves for EMIC wave (upper dashed
curve) and whistler wave (lower solid curve).
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3.2. Nonlinear Schrödinger Equation for the Complex
Envelope Function A(x, y, t)
[14] Now we will derive the nonlinear Schrödinger

equation, using the Maxwell equation for the ion cyclotron
waves,

r2E" " 1
c2

@2

@t2
E" ¼ 4#enp

mpc2
@p"
@t

: ð13Þ

For our problem, the contribution of the electron current
density is smaller than of that of the protons. Here p− = px −
ipz is the ion momentum due to a rapidly varying electro-
magnetic field. A simple calculation of p− follows from the
equation of motion, equation (10):

p" ¼ ieA
!" !cp

þ
e!cp

!" !cp
! "2

1
!0

@A
@t

" #

ei k0y"!0tð Þ: ð14Þ

Recall that according to equation (2), we have assumed that
all quantities have both fast and slow temporal‐spatial
scales.
[15] Substituting equation (14) into equation (13), we

obtain for the ion cyclotron waves a nonlinear Schrödinger
equation of the following form:

2i
@

@t
þ vg

@

@y

# $
Aþ c2

!0

@2

@x2
þ @2

@y2

# $
A" !04!

G
A

"
!2
pp!0

G !0 " !cp
! " &np

n0p
A ¼ 0; ð15Þ

where the group velocity is

vg ¼ 2
!cp " !0

k0

# $
; ð16Þ

and

G ¼
!2
pp!cp

2 !cp " !0
! "2 ; D! ¼

k20c
2 þ

!2
pp!0

!0 " !cp
" !2

0

!0
: ð17Þ

3.3. Parametric Decay Instability of Large‐Amplitude
Plane Waves
[16] In order to consider modulational instabilities

(leading to the excitation of magnetosonic waves), we lin-
earize equations (9)–(12) and (15) and search for plane wave
solutions of the form exp[i(qr − Wt)]. We obtain the fol-
lowing dispersion equation:

W" qyvg
! "2" c2q2

2G

# $2
" #

W2 " W2
þ

! "
W2 " W2

"
! "

¼ B
eA
mpc2

# $2

;

ð18Þ

where

B ¼ W2 " q2yV
2
A

& '
q2yc

2 þ
qyk0W!cpc2

!0 !0 " !pi
! "

 !

þ W2q2xc
2

" #

* 2!2
0

!0 " !cp
! "2

!2
ppq

2c2

G2 : ð19Þ

Here VA is the Alfvén speed, and q2 = qx
2 + qy

2. In
equation (18), W± are the fast and slow magnetosonic fre-
quencies:

W2
+ ¼ 1

2
q2 V 2

A þ v2s
! "

+ q2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
A þ v2s

! "2"4V 2
Av

2
s cos2 '

q
; ð20Þ

where ' = tan−1(qy/qx).
[17] Equation (18) has several types of complex solutions.

For example, when W ∼ qyvg ≈ W+ or W ∼ qyvg ≈ W−, we have
the excitation of fast or slow magnetosonic waves by the
electromagnetic waves. These instabilities also lead, in
general, to the existence of two different solutions.

4. Coherent Nonlinear EMIC Structures

[18] In the previous section, we mentioned that the
amplitude modulation of the electromagnetic waves leads to
an excitation of magnetosonic waves whose amplitude
grows exponentially. Eventually, the wave amplitude stops
growing due to the influence of nonlinear terms that were
ignored in the linear analysis. Now we take into account
nonlinear terms due to the ponderomotive force, which
redistributes the protons and changes the density of the
plasma. The convective derivative term (vp · r)vp continues
to be ignored, at least as long as the wave does not steepen
too much.

4.1. Envelope Solitons
[19] Here we show that there are soliton solutions for the

nonlinear Schrödinger equation in equation (15). We look
for solutions that propagate as x = y − vgt and assume that
any dependence on this variable is faster than that on the
spatial coordinate x or the time t. Hence for the ponder-
omotive force in equations (11) and (12), we assume that
∣fy∣ ≫ ∣fx∣. Thus we can simplify equations (11) and (12)
and the ponderomotive force fy may be written as

fy ¼ "mpc2
!cp

!cp " !0

@

@(

e2 j E j2

m2
pc2!

2
0
: ð21Þ

In this limit, we obtain the density perturbation as follows:

&n
n0

¼ 1

v2g " v2s
& ' !cp

!cp " !0

e2A2

m2
p!

2
0
: ð22Þ

Substituting the expression of equation (22) into the non-
linear Schrödinger equation, equation (15), we obtain

@2

@(2
þ @2

@x2

# $
A" !04!

c2
Aþ

!2
pp!

2
cp

v2g " v2s
& ' 1

!cp " !0
! "2

) e2

m2
pc2!

2
0
A3 ¼ 0: ð23Þ
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Introducing the new variables x′ = cffiffiffiffiffiffiffiffiffi
!04!

p x and x′ = cffiffiffiffiffiffiffiffiffi
!04!

p x
and the dimensionless function

U ¼ c2

!04!

# $1=2
!ppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2g " v2s

q !cp

!cp " !0
! " e

mpc!0
A; ð24Þ

we can rewrite the nonlinear Schrödinger equation as

@2

@(02
þ @2

@x02

# $
U " U þ U3 ¼ 0: ð25Þ

[20] In general, equation (25) describes asymmetrical two‐
dimensional solitons. For the case of symmetrical solitons
written in terms of the cylindrical coordinate % =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(02 þ x02

p
,

equation (25) has the form

1
%

@

@%
%
@

@%
U

# $
" U þ U3 ¼ 0: ð26Þ

The solutions of this equation have been described by
Gurevich and Shvartsburg [1973], with the boundary con-
ditions U→ 0 for r →1 and either U = const or dU/dr = 0
at r = 0. The boundary condition dU/dr = 0 at r = 0 leads to
U having discrete values Un at r = 0. The fundamental mode
has U1 = 2.2; this is a soliton solution, peaked at r = 0 and
falling off as r1/2e−r as r → 1. The higher‐order modes for
n > 1 are damped oscillatory wave functions with (n − 1)
zero crossings and have initial values U2 = 3.3, U3 = 4.1,
U4 = 4.6, etc. Hence equation (26) has a soliton solution
only for moderate initial values of U. For comparatively
large initial values of U, this equation describes nonlinear
stationary waves propagating with a group velocity vg.

4.2. Vortex Solutions and the Acceleration of Ion Jets
[21] In this section we show that in a homogeneous

plasma, electromagnetic ion cyclotron waves can lead to the
generation of vortices and a quasi‐static magnetic field. The
acceleration of ions by these vortices are also considered.
Previously, these problems have been considered in laser
plasma physics by Tsintsadze et al. [2002, 2006].
[22] Now we will investigate the acceleration of protons

(as light ions) by the vortex that is generated by the pon-
deromotive force. To derive the equation for vortices, we
use the momentum equation for the proton species,

@

@t
mpvþ

e
c
A

& '
¼ "er’þ e

c
v* Bþ v* r* mpv

! "

" 1
np

rP "r
mpv2

2

# $
þ f : ð27Þ

The expression for f is given in equations (11) and (12).
Here, P is the proton pressure, and A and ’ are the vector
and scalar potentials, respectively, related to the existence of
the ponderomotive force f:

B ¼ B0yêy þr* A: ð28Þ

Taking the curl of both sides of equation (27), for isothermal
protons we obtain

@!!!!

@t
¼ r* v* !!!!ð Þ þr* f ; ð29Þ

where

!!!! ¼ r* mpvþ
e
c
A

& '
ð30Þ

is the vorticity of the canonical ion momentum.
[23] If the characteristic spatial scale length and the

characteristic timescale satisfy the inequality l > vt, we may
then neglect the first term on the right‐hand side in equation
(29) compared to the term on the left‐hand side and obtain
the following simple relationship between the vorticity and
the source:

W ¼ !cp

!cp " !0
! "2 k0 *r e2A2

mpc2
: ð31Þ

We now introduce the canonical momentum circulation G,
defined as

G ¼
I

l
pþ e

c
A

& '
) dl ¼

Z

S
!!!!dS: ð32Þ

Here the integral is taken along a closed contour. Owing to
the existence of the last term in equation (12), the flux of W
through a surface bounded by any closed ion fluid contour,
as well as the canonical momentum circulation, is not
conserved, namely,

dG
dt

¼ d
dt

I
pþ e

c
A

& '
) dl ¼

!cp

!cp " !0
! "2

@

@t

I

l

e2A2

mpc2
k0 ) dr:

ð33Þ

Hence if there are initially no vortices, they will be gener-
ated by the electromagnetic ion cyclotron waves over time.
[24] Note that since the wave number k0 is directed along

the y‐axis and the ponderomotive force is a function of (x, y),
then the vorticity has only one component, Wz. Thus we can
rewrite equation (29) as

d
dt
ln
Wz

n
¼ k0!cpmp

!cp " !0
! "2

1
Wz

@

@t
@

@x
e2A2

m2
pc2

: ð34Þ

Equation (34) is a generalization of the Hasegawa‐Mima
equation, and it clearly breaks the frozen‐in condition
[Nishikawa et al., 1980], given that d[ln(Wz/n)]/dt = 0.
[25] A simple expression for the magnetic field that is

generated by the nonstationary ponderomotive force can be
obtained from equation (31) if we assume that ∣r × mpv∣ ,
eBz/c. We then obtain

eBz

mpc
¼

!cpc2

!cp " !0
! "2 k0

@

@x
eA
mpc2

# $2

: ð35Þ

[26] Let us estimate this quantity for the following
numerical values: wcp ∼ 0.37 × 103 Hz, w0 − wcp ≈ k0vtp,
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∂/∂x ∼ 1/L0x ∼ 1.6 × 10−9 cm−1, k0 ∼ 10−7 cm−1, eA/mpc
2 ∼

10−6, vtp ∼ 105 cm/sec. Substituting these parameters into
equation (35), we obtain the following estimate for the nor-
malized magnetic field perturbation

eBz

mpc
ffi 3:7 Hz; ð36Þ

or, in unnormalized form, Bz ffi 0.5 × 10−4 G.
[27] We now demonstrate that there exists a vortex ring

that provides a mechanism for proton acceleration. Essen-
tially, this is a consideration of the inverse problem, namely,
that given a vortex, we can define the canonical fluid
momentum P at any point of the plasma. To this end, we
suppose that the plasma is at rest until the vortex is gener-
ated, W = r × P. Let D be some vector for which r · D = 0,
and P = r × D. Then for D we obtain the following
equation:

r2Dz ¼ "Wz; ð37Þ

where r2 = ∂2/∂x2 + ∂2/∂y2.
[28] The solution of equation (37) in our two‐dimensional

case is

Dz ¼
1
2#

Z
Wz x0; y0ð Þ ln 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x" x0ð Þ2þ y" y0ð Þ2
q dx0dy0: ð38Þ

To carry out the integration in equation (38), we suppose
that ∣A(x,y)∣2 has the form of a step function,

jAj2 ¼ A2
0Q x0 " xð ÞQ y0 " yð Þ ; ð39Þ

where the Heaviside functionQ(w) = 1 if w ≥ 0, andQ(w) = 0
when w < 0.
[29] In this case, the expression in equation (31) for the

z component of the vorticity becomes

Wz ¼ Q
@

@x
jAj2 ¼ "Q& x" x0ð ÞQ y0 " y0ð Þ; ð40Þ

where

Q0 ¼
!cpmpc2

!cp " !0
! "2 k0

eA0

mpc2

# $2

: ð41Þ

Substituting equation (40) into the equation, equation
(38), for the function Dz, we obtain the following integral:

Dz ¼
1
2
Q0

Z y0

0
dy0 ln x0 " xð Þ2þ y" y0ð Þ2

& '
: ð42Þ

[30] Knowing the z component of the vector D, we can
define the components of the canonical momentum:

Px ¼
@Dz

@y
and Py ¼ " @Dz

@x
: ð43Þ

Simple calculations with equation (43) lead to the following
expressions for Px and Py:

Px ¼
Q0

2#
x0 " xð Þ2

x0 " xð Þ2þ y0 " yð Þ2
; ð44Þ

Py ¼
Q0

#

y0 " yð Þ x0 " xð Þ
x0 " xð Þ2þ y0 " yð Þ2

; ð45Þ

where x0 and y0 are the width and length of the vortex belt,
respectively.
[31] Let us consider the limiting case of y = x = 0 and

suppose that ∣(x0 − x)∣ , ∣(y0 − y)∣. Then, from equations
(44) and (45), we derive the following expressions:

Px ffi
Q0

2#
x0
y0

# $2

and Py ffi
Q0

#

x0
y0

; ð46Þ

where Q0 is defined by equation (41).
[32] The vortex structures here derived could be used to

compute the extent of the acceleration of ions by following
particle orbits in the wavefields. We defer this numerical
calculation to a future publication.

5. Summary

[33] In this paper we have studied the nonlinear interac-
tion of the electromagnetic ion cyclotron frequency waves
with plasma particles in the inner magnetosphere. The
emission is considered to be circularly polarized electro-
magnetic waves propagating along the almost constant
dipole geomagnetic field in the equatorial region of the inner
magnetosphere. We studied excitation of the magnetosonic
waves through the amplitude modulation of the electromag-
netic ion cyclotron waves, and obtained a two‐dimensional
nonlinear Schrödinger equation for the EMIC waves. In the
stationary case, we found two solutions of the nonlinear
Schrödinger equation with distinct natures. For sufficiently
small amplitudes of the EMIC field, there exists a two‐
dimensional bright soliton, whereas for larger amplitudes the
solution is oscillating. The generation of both vortices and of
a quasi‐static magnetic field across the geomagnetic field
lines was discussed. The possible relationship of EMIC
waves and their nonlinear properties to various geophysical
source mechanisms is a subject for future studies.
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